
实验二：进程控制

实验简介：本次实验主要理解程序和进程的关系，进程的创建，

多进程的运行以及同步互斥的控制。

实验目标：

（1）加深对进程概念的理解，明确进程和程序的区别。

（2）进一步认识并发执行的实质。

（3）分析进程竞争资源现象，学习解决进程互斥的方法。

实验内容：

（1）进程的创建

编写一段源程序，使系统调用 fork()创建两个子进程，当此程

序运行时，在系统中有一个父进程和两个子进程活动。让每一个进程

在屏幕上显示一个字符：父进程显示字符“a”;子进程分别显示字符“b”

和字符“c”。试观察纪录屏幕上的显示结果，并分析原因。

（2）进程的控制

修改已编写的程序，将每个进程输出一个字符改为每个进程输出

一句话，在观察程序执行时屏幕出现的现象，并分析原因。

如果在程序中使用调用 lockf()来给每一个子进程加锁，可以实

现进程之间的互斥，观察并分析出现的现象。

（3）进程的管道通信

编制一段程序，实现进程的管理通信。

使用系统调用 pipe()建立一条管道线；两个子进程 P1 和 P2 分

别向管道中写一句话：

Child 1 is sending a message!

Child 2 is sending a message!

而父进程则从管道中读出来自于两个子进程的信息，显示在屏幕

上。

要求父进程先接收子进程 P1发来的消息，然后再接收子进程 P2

发来的消息。

实验所需基础：

操作系统：Linux RHEL 6.0

实验是否需要联网：否

实训步骤：

步骤一：进程的创建

编写一段程序，使用系统调用 fork()创建两个子进程。当此程

序运行时，在系统中有一个父进程和两个子进程活动。让每一个进程

在屏幕上显示一个字符；父进程显示字符“a”，子进程分别显示字符

“b”和“c”。试观察记录屏幕上的显示结果，并分析原因。

〈程序〉

#include<stdio.h>

main()

{

int p1,p2;

while((p1=fork())==-1);

if(p1==0) /*子进程创建成功*/

putchar('b');

else

{

while((p2=fork())==-1);

if(p2==0) /*子进程创建成功*/

putchar('c');

else

putchar('a'); /*父进程执行*/

}

}

步骤二：进程的控制

修改已编写好的程序，将每个程序的输出由单个字符改为一句话，

再观察程序执行时屏幕上出现的现象，并分析其原因。如果在程序中

使用系统调用lockf()来给每个程序加锁，可以实现进程之间的互斥，

观察并分析出现的现象。

〈程序 1〉

#include<stdio.h>

main()

{

int p1,p2,i;

while((p1=fork())==-1);

if(p1==0)

for(i=0;i<50000;i++)

printf("child %d\n",i);

else

{

while((p2=fork())==-1);

if(p2==0)

for(i=0;i<50000;i++)

printf("son %d\n",i);

else

for(i=0;i<50000;i++)

printf("daughter %d\n",i);

}

}

〈程序 2〉

include<stdio.h>

main()

{

int p1,p2,i;

while((p1=fork())==-1);

if(p1==0)

{

lockf(1,1,0);

for(i=0;i<50000;i++)

printf("child %d\n",i);

lockf(1,0,0);

}

else

{

while((p2=fork())==-1);

if(p2==0)

{

lockf(1,1,0);

for(i=0;i<50000;i++)

printf("son %d\n",i);

lockf(1,0,0);

}

else

{

lockf(1,1,0);

for(i=0;i<50000;i++)

printf("daughter %d\n",i);

lockf(1,0,0);

}

}

}

比较<程序 1>和<程序 2>的运行结果，分析 lockf()函数的作用。

步骤三：管道通信

编制一段程序，实现进程的管道通信。使用系统调用 pipe()建立

一条管道线。两个子进程 p1和 p2 分别向通道个写一句话：

child1 process is sending message!

child2 process is sending message!

而父进程则从管道中读出来自两个进程的信息，显示在屏幕上。

〈程序〉

#include <unistd.h>

#include <signal.h>

#include <stdio.h>

int pid1,pid2;

main()

{

int fd[2];

char outpipe[100],inpipe[100];

pipe(fd); /*创建一个管道*/

while ((pid1=fork())==-1);

if(pid1==0)

{ lockf(fd[1],1,0);

sprintf(outpipe,"child 1 process is sending message!");

/*把串放入数组 outpipe 中*/

write(fd[1],outpipe,50); /*向管道写长为 50 字节的串*/

sleep(5); /*自我阻塞 5秒*/

lockf(fd[1],0,0);

exit(0);

}

else

{ while((pid2=fork())==-1);

if(pid2==0)

{ lockf(fd[1],1,0); /*互斥*/

sprintf(outpipe,"child 2 process is sending message!");

write(fd[1],outpipe,50);

sleep(5);

lockf(fd[1],0,0);

exit(0);

}

else

{ wait(0); /*同步*/

read(fd[0],inpipe,50); /*从管道中读长为 50 字节的串*/

printf("%s\n",inpipe);

wait(0);

read(fd[0],inpipe,50);

printf("%s\n",inpipe);

exit(0);

}

}

}

分析 wait（）系统调用、sleep（）系统调用的作用。

	实验二：进程控制

